Designing and Improvement of a New Reversible Floating Point Adder

Fatemeh Alaghemand
MSc. Student, Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.alaghemand_fa@yahoo.com

Majid Haghparast
Assistant Professor, Department of Computer Engineering, Yadegar – Imam Khomeini (RAH) Branch, Islamic Azad University, Tehran, Iran.haghparast@iausr.ac.ir

Abstract – In recent years, reversible logic has been proposed as an emerging technology that can be used in quantum computing, optical computing and nanotechnology. A necessary condition for the reversibility of a computational model is that there should be a unique one-to-one mapping between the inputs and outputs. Conventional gates, however, do not have this capability; thus, reversible gates are designed, and reversible circuits are manufactured by the gates. Measures of quantum cost, the number of constant inputs and the number of garbage outputs are calculated to evaluate the performance of these circuits. In this study, we have decided to design a reversible floating point adder, capable of summing the floating point numbers and minimizing the quantum cost, the number of garbage output and the number of constant input opposed to prior designs.

Keywords – Floating point adder, Nanotechnology, Quantum cost, Reversible logic.

1. INTRODUCTION

According to Moore's law, every 18 months up to two years, the number of transistors on a chip with the same size will double. Researchers have concluded that in coming years, because of the transistors' heat, Moore's Law will show some limitations. If transistors placed in a closer distance on the chip, will dissipate more heat and lose internal energy [1].

In 1961, Landauer proved that processing in non-reversible circuits (conventional circuit) causes loss of energy, and the energy dissipation per bit of data during the computation is KTln2 Jules, where K=1.3806505x10^-23 (Joules/Kelvin) is Boltzmann's constant and T is the absolute temperature of the environment at which the process occurs [2]. In 1973, Bennett showed, if a circuit is made of reversible gates, the heat dissipation will be zero, because reversible circuits avoid bit loss trough unique mapping between the input and output vectors and reusing the information instead of discarding it[3].

Given the fact that one important goal in hardware design is the design of circuits with low power consumption, the use of reversible gates in circuits in the coming years will become an imperative. In other words, reversible circuits, in the near future will replace the current conventional circuits.

Adding is one of the most widely used mathematical operations, and so far several reversible adders have been designed for fixed point numbers. However, floating-point operations have more precision. In present study, we intended to design a reversible floating point adder circuit.

This paper is divided into six parts. Section 2 reviews basic definitions and reversible gates, Section 3 outlines a floating-point addition algorithm and architecture and describes briefly the existing designs, and Section 4 shows our proposed designs. The comparison between the existing designs and our proposed design and the conclusion are in Parts 5 and 6 respectively.

2. BASIC DEFINITIONS AND REVERSIBLE GATES REVIEW

Reversible logic and measuring parameters for reversible gates are introduced in the following section:

2.1. Definitions

Reversible logic: A function f, is reversible if and only if there exists a function g such that x = g (f(x)) for all x's in the domain of f. In other words, f is called reversible if:

a. The number of outputs is equal to the number of inputs;
b. Any output vector has a unique mapping input vector [4].

Reversible gate: Gates which have an equal number of input and output are defined as reversible gates. Reversible gates have a one-to-one correspondence between the input and output vectors. That is, we can determine the outputs from the inputs and also uniquely recover the inputs from the outputs [5].

An N*N reversible gate can be represented as:

\[I = (I_1, I_2, I_3, \ldots, I_N) \]
\[O = (O_1, O_2, O_3, \ldots, O_N). \]

Where I, represents the input vector and O, is the output vector.

Minimizations of the number of quantum cost, garbage outputs, and constant inputs have an important role in the design of a reversible circuit.

Garbage outputs (GO): The outputs that are not used in the next computations are called garbage outputs [6]. Put simply, any unexploited output from a gate is garbage [7].
Quantum cost (QC): The quantum cost of a reversible gate is the number of 2x2 reversible gates required in designing it. The quantum cost of all reversible 2x2 gates is taken as 1 and the cost of all the 1x1 reversible gates is assumed to be zero [8].

Constant inputs (CI): The inputs that are added to an n x k gate to make it k x k gate are called constant inputs [8]. These inputs are to be kept constant at either 0 or 1 in order to synthesize the given logical function [7].

2.2. Reversible Gates Review
A set of reversible logic gates is needed to synthesize reversible circuits. Several reversible gates have been proposed in the literature, such as Feynman [9], Toffoli [10], Fredkin [12], TR [13], etc. The most important of which are as follows:

NOT gate: The only 1x1 reversible gate is a inverter. This gate is very important because it produces no garbage outputs and has zero quantum cost [5]. The Not Gate is shown in Fig. 1a.

Feynman gate (FG): One of the most consequential reversible logic gates is the Feynman Gate, also called Controlled NOT gate (CNOT). This gate is a 2x2 reversible logic gate and can be represented as:

Ii = (A, B)
Oi = (P = A, Q = A⊕B)

Where Ii represents the input vector and Oi is output vector. A 2x2 Feynman gate is shown in Fig.1b, 1c. Its quantum cost is 1 [9].

![Fig1. NOT gate (a), Feynman gate (b, c)](image1.png)

Peres gate (PG): Peres gate is a 3x3 reversible gate. It can be shown as:

Ii = (A, B, C)
Oi = (P = A, Q = A⊕B, R = AB⊕C)

Where Ii represents the input vector and Oi is output vector. Fig.2a, 2b shows the Peres gate. Its quantum cost is 4. In the existing literature, among 3x3 reversible gates, Peres gate has the minimum quantum cost [11].

Fredkin Gate (FRG): Fredkin gate is shown in Fig. 2c, 2d and can be described as:

Ii = (A, B, C)
Oi = (P = A, Q = AB⊕AC, R = AB⊕A'C)

Where Ii represents the input vector and Oi is output vector.

It is also known as swap gate. If the control input is A=‘0’ then inputs B and C are shown clearly in outputs, else if A= ‘1’ then inputs B and C are swapped and shown in outputs, FRG has a quantum cost of 5 [12].

![MUX gate](image2.png)

Fig. 2. Peres gate (a, b), Fredkin gate (c, d)

MUX gate: MUX gate is a 3x3 reversible gate shown in Fig. 3a. Its functionality is represented as:

Ii = (A, B, C)

Oi = (P = A, Q = A⊕B⊕C, R = AB⊕A'C)

Where Ii represents the input vector and Oi is output vector. This gate can work as a reversible 2:1 Multiplexer. When input A is ‘0’ data on input line C is chosen and put on the output line R. When input A is ‘1’ data on input line B is chosen and put on the output line R. Therefore, input line A acts as a control line and input lines C and B act as data input lines. The quantum cost of this gate is 4 [14].

HNG gate: A 4*4 reversible HNG gate can be described as:

Ii = (A, B, C, D)

Oi = (P = A, Q = B, R = AB⊕C, S = (A⊕B).C⊕AB⊕D)

Where Ii represents the input vector and Oi is output vector. HNG is a two-through reversible gate and can be used for implementing all Boolean functions. Also, if input D=0, the HNG gate will work as a reversible full adder [15]. This is shown in Fig. 3b, 3c. The quantum cost of this gate is 6.
3. ALGORITHM AND EXISTING DESIGN
Implementation of floating point operations depends on the particular format applied to display the operands.

Two 32-bit (1 sign bit, 8-bit exponent, 23-bit mantissa) floating point numbers A and B in IEEE-754 standard are to be added. In the standard form, the exponents of both operands must be equal before adding the mantissa. To satisfy this condition, the smaller number's exponent should be incremented until it reaches the larger number's, and then antissa be aligned by shifting the mantissa of the smaller operand to the right, its exponent is incremented at the same time, until it equals the other exponent. When the exponents are equal, the mantissa can be summed. Finally, the sum is normalized and rounded. Fig.4 shows the general algorithm of the floating point architecture. Since two reversible floating point adders in [16], [17] are designed, in this section, we present these designs.

3.1. Reversible Conditional Swapping
To identify the number with the smaller exponent and the difference between the two exponents, a reversible conditional swap is necessary. Fig. 5 shows the details of the existing designs. If expA<expB then the two numbers will be swapped; otherwise, nothing should be done. Next, the number with the smaller exponent always comes out in the Y output and goes to the alignment unit.

3.2. Reversible Alignment
Alignment is necessary because we can only add two mantissas when the two exponents are equal. Therefore, in order to do that, a reversible shifter is needed. The difference between the two exponents is the shifted amount. After the mantissa is shifted, the bits that are shifted out should not be all thrown away since they can possibly affect the rounding of the result. Keeping all the shifted bits will double the width of the mantissa. Therefore, the three bits, namely, G (guard), R (round) and S(sticky) must be used.

When the mantissa of the number with the smaller exponent is shifted to the right as much as the exponent difference, two of the shifted out bits of the aligned mantissa will be retained as G and R bits. A third bit, which is S, is inserted at the right end of the aligned mantissa. The sticky bit will be obtained by OR all shifted out bits. So for m-bit mantissa, the width of aligned mantissa must be m + 3 bits. Fig. 6 shows the existing designs of the alignment unit.
3.3. Reversible Converter
In IEEE-754 standard, numbers are in sign-magnitude format, namely 1 bit for sign and 23-bit for mantissa. After shifting the mantissa of two numbers and before adding them, they must be converted from sign-magnitude representation to two's complement. After the addition, the result will be converted from two's complement to sign-magnitude format. Thus, two 28-bit sign-magnitudes to two's complement reversible converters and one 29-bit two's complement to sign-magnitude reversible converter are needed. The existing designs for converter are shown in Fig. 7.

![Converter Diagram](image)

Fig. 7. Existing Converters

3.4. Reversible Addition
For the 28-bit full adder unit, a reversible ripple carry adder consisting of a single reversible half adder (RHA) in the least significant sum position followed by 27 reversible full adders (RFAs) is used. For the RHA, the Peres gate is used, and for the RFA the HNG gate is used. These gates implement the required functionality with the smallest known quantum cost [18], [19].

3.5. Reversible Normalization and Rounding
A floating point number is normalized if the most significant bit of the mantissa is non-zero. In normalization unit, if a shift is needed, it is either one place right shift or several places left shift. If normalization requires a right shift, only one place must be shifted to the right, and the exponent will need to be added with one. If normalization requires shifting the sum to the left, then the first the number of leading zeros must be counted to be used as a shift amount. Then according to [16] a Reversible Leading Zero Counter (RLZC) is needed. After determining the amount of the left shift, the exponent must be reduced according to the number of zeros. The algorithm of normalization unit is shown in Fig. 8.

![Normalization Diagram](image)

Fig. 8. Normalization Unit

4. PROPOSED DESIGN
Since the aim of this study is designing a reversible floating point adder with the least amount of quantum cost, garbage outputs and constant inputs, in this section, we propose a new design according to the algorithm shown in Fig. 4.

4.1. Conditional Swap
To add two floating point numbers, the exponents must be equal, so we need a conditional swap circuit. In [16] 9 HNG gates for the construction of reversible full subtractor (RFS) are used while in [17] there are 7 new RFS and 1 new reversible half subtractor (RHS), which are made by the gate TR.

With regard to [17] where the new RHS and new RFS are used, yielding the lowest quantum cost, we also used this design for conditional swap circuit (Fig. 5).

4.2. Alignment Unit
After the two exponents are equalized, the mantissa with the smaller exponent should be shifted to the amount of the difference of exponents, so we need Alignment Unit. We used the circuit designed in [20] for this unit. Fig. 9
shows the circuit for 8 bits. This unit has a right barrel shifter and GRS-bit generation component.
In the (m,k) reversible Alignment, m is the number of mantissa bits, k represents the shift value and the number of exponent bits retained in E. Thus, this circuit will have K+1 rows.
For (8, 3) reversible Alignment, if M=8 and E=5 then \(d_1,d_0\) lines will be equal to the exponent difference of the two mantissas where \(d_2,d_3\) determine the shift amount, and \(d_4,d_5\) are used as two inputs of PG that work as a NOR gate to create the final result and the required GRS-bits. In this design, FRG works as a multiplexer, FG works as fan-out gates and PG works as AND/OR/NOR gates.

Fig.9. Alignment Unit in [20]

4.3. Converter
To add two sign magnitude numbers, first they must be converted to 2’s complement, so if the sign bit of the number is one, invert it and add it with 1. We used the MUX gate to design converter in Fig.10. In this design, if sign = 1, first, the least significant bit (LSB) goes to the output unchanged while the other bits are reversed by the FG and go into the MUX gates then added with 1. These MUX gates except the first one works as RHA; otherwise, if sign = 0, the bits without change go to the output.
Table1 compares the two existing designs and our proposed design for converter in quantum cost, garbage output and constant input. The design in [17] because of ignoring the sign bit has less quantum cost.

Table(1). Comparison between proposed and Existing Converters for 8 bit inputs

<table>
<thead>
<tr>
<th>Converter for 8 bits</th>
<th>QC</th>
<th>GO</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing design in [16]</td>
<td>41</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Existing design in [17]</td>
<td>30</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Proposed design</td>
<td>40</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

4.4. Normalization and Rounding Unit
Since the designs in [16], [17] both used the algorithm in Fig. 8 to normalize the final result, we applied the same algorithm for the normalization phase, except that the components will change in this case.
The complete reversible normalization unit works as follows: If the 28-bit mantissa has a value of one in its MSB, it must be right shifted one place. Therefore, the MSB of the mantissa is connected to the carry input of a RHA to be added with the 8-bit exponent, where the RHAs are made by PG. Otherwise, if the MSB is not equal to one, the mantissa and the exponent are passed to the next level unchanged.
The leading zeros of the mantissa are counted using our RLZCU, the output of which is connected to the both the shift amount input of a (32, 5) reversible left barrel shifter and the minuend input of a reversible subtractor. We used three MUX gates, a PG and a FG to design the RLZC. Fig. 11 shows the circuit, and Table.2 compares this design with the existing designs.

Table(2). Comparison between Proposed and Existing RLZCs

<table>
<thead>
<tr>
<th>RLZC</th>
<th>QC</th>
<th>GO</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing design in[16]</td>
<td>27</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Existing design in[17]</td>
<td>20</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Proposed design</td>
<td>17</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

While previous designs used barrel shifters designed in [21], [22], we used the design in Fig. 12 to apply conditional shifter and the circuit in [23] for the left barrel shifter. Also, we used the design of the [17] for RFS.
The reversible normalization has a 32-bits output, but only 23-bits are needed; therefore, in the last phase we discarded the other 9-bits.

Fig.10. Proposed Converter

Fig.11. Proposed RLZC

Fig.12. Proposed Conditional Shifter
5. COMPARISON
In this section, we analyzed the performance of the proposed design and compared it with the existing designs in [16] and [17]. Quantum cost, garbage output and constant input for each design are shown in Table 3.

6. CONCLUSION AND FUTURE WORK
In this work, we presented a reversible floating-point adder design, because the fixed-point adder is less precise in the representation of numbers. The proposed design is made up of several parts, including: Conditional swap, Alignment unit, Converter, Addition and Normalization. We attempted to improve the parameters of quantum cost, garbage outputs and constant inputs for these parts and finally compared this design with the existing designs. Our proposed design has reduced 78% and 30% of the quantum cost, 78% and 26% of the garbage output and 79% and 30% of the constant input in compared with [16] and [17] respectively.

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Comparison between proposed design and existing designs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
<td>Existing design[16] QC GO CI</td>
</tr>
<tr>
<td>Swap</td>
<td>238</td>
</tr>
<tr>
<td>Alignment</td>
<td>12312</td>
</tr>
<tr>
<td>Addition</td>
<td>166</td>
</tr>
<tr>
<td>Conversion</td>
<td>454</td>
</tr>
<tr>
<td>Normalization</td>
<td>2009</td>
</tr>
<tr>
<td>Rounding</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>15179</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENT
This study was done in the Department of Computer Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran and was a part of thesis of Miss Fatemeh Alaghemand a MSc. Student of Computer engineering. Authors gratefully acknowledge the help and support of Dezful Branch, Islamic Azad University, Dezful, Iran.

CONFLICT OF INTEREST
There is no conflict of interest to be declared.

REFERENCES

