3D Modeling of a Vertical Junction Polycrystalline Silicon Solar Cell Under Monochromatic Illumination in Frequency Modulation

Aminata GUEYE CAMARA, Ndeye THIAM, Idrissa GAYE, Sahin GÔKAN and Grégoire SISSOKO

Laboratory of Semiconductors and Solar Energy, Physics Department, Faculty of Science and Technology, University Cheikh Anta Diop, Dakar, Senegal (gsissoko@yahoo.com)

Abstract - This work presents a theoretical 3D study of a vertical junction polycrystalline silicon solar cell illuminated by a monochromatic light and in frequency modulation. Based on the excess minority carrier's density, the photocurrent density and the photovoltage are calculated. The solar cell dynamic impedance defined as the ratio of the photovoltage by the photocurrent, is then determined. The dynamic impedance module and phase are then studied and we exhibited the effects of grain size, grain boundary recombination velocity, junction recombination velocity and illumination wavelength.

Keywords - vertical junction – impedance – frequency modulation.

I. INTRODUCTION

Given the low conversion efficiency of solar cells (M. A. Green, 1995), many researchers have been conducted to increase this conversion efficiency by improving existing structures by passivating quasi-neutral regions (T. Dullweber et al., 2011; T. Dullweber et al., 2012), adding a back surface field (L. M. Koschier et al., 1998; Kaminski et al., 2002) or by creating novel structures like vertical junction (Terheiden et al., 2000; R. Sarfaty et al 2011), triple junction (Meusel et al., 2007) and bifacial (G. Untila et al, 2008; C. Duran et al., 2010) solar cells.

In this work, we will show the effects of illumination wavelength, grain size, grain boundary recombination velocity and junction recombination velocity on the dynamic impedance of a vertical parallel junction solar cell.

II. THEORY

II.1 Model assumptions

Figure 1 illustrates the interconnection for a vertical parallel multijunction solar cell. Our 3D simulations are based on the following model for the vertical junction cell (fig2):

Figure 2: Solar cell’s unit grain

gx and gy are the grain size, gz is the base depth along z axis.

We made the following assumptions:
- Emitter thickness and contribution are neglected (A. Dieng et al., 2011; A. Thiam et al., 2012).
- Illumination on the z=0 plane is uniform so that generation rate depends only on the depth z in the base (J. Dugas, 1994).

II.2 Excess minority carrier’s density

When the solar cell is illuminated with a monochromatic light in frequency modulation, the excess minority carrier’s density verifies the following equation:

\[D_n \cdot \nabla^2 \delta_n(x, y, z, t) + \frac{\delta_n(x, y, z, t)}{\tau_n} + G(z, t) = \frac{\partial \delta_n(x, y, z, t)}{\partial t} \]

\[D_n \] is the diffusion constant, \(\tau_n \) is the excess minority carrier’s lifetime and \(G(z, t) \) is the carrier’s generation rate at the depth z and time t. \(G(z, t) \) can be written as (H. J. Moller, 1993; L. Bousse et al 1994):

\[g(z) = \alpha(\lambda) \cdot (1 - R(\lambda)) \cdot I_o \cdot e^{-\alpha(\lambda) \cdot z} \]

(2)

\(\alpha \) is the absorption coefficient for a given wavelength, R is the refractive index and \(I_o \) the incident photon flux. R, \(\alpha \), and \(I_o \) are obtained from (M. A. Green, 2008).

Replacing eq.(2) and eq.(3) into eq.(1) lead to:
\[\delta_n(x, y, z) = \sum_k \sum_j F_{kj}(y) \cos(C_k x) \cdot \cos(C_j z) \]

with
\[F_{kj} = A_{kj} \cdot ch(y) + B_{kj} \cdot sh(y) = \frac{\alpha(1 - R)}{L_{kj}} \cdot \frac{\alpha^2 - 1}{D_{kj}} \cdot e^{-\alpha z} \]

and
\[D_{kj} = \frac{Dn \cdot C_k(2C_l, 2C_g, g) - \sin(2C_l, 2C_g, g))}{16 \cdot \alpha^2 (2C_l, 2C_g, g)} \cdot \frac{(2C_l, 2C_g, g) - \sin(2C_l, 2C_g, g))}{\alpha (2C_l, 2C_g, g) - \cos(C_l, 2C_g, g) + e^{-\alpha z}} \]

Coefficients \(A_{kj} \) and \(B_{kj} \) are determined from the following boundary conditions (H. L. Diallo et al, 2008):
- At the junction (\(z = 0 \)):
 \[D_n \frac{\delta_n(x, y, z)}{\partial y} \bigg|_{y = -\frac{t_2}{2}} = Sf \cdot \delta_n(x, y, z) \bigg|_{y = -\frac{t_2}{2}} \]
- In the middle of the base (\(y = 0 \)):
 \[D_n \frac{\delta_n(x, y, z)}{\partial y} \bigg|_{y = 0} = 0 \]
- At the grain boundaries (\(x = \frac{gx}{2} ; x = -\frac{gx}{2} \)):
 \[D_n \frac{\delta_n(x, y, z)}{\partial x} \bigg|_{x = \pm \frac{gx}{2}} = Sg \cdot \delta_n(x, y, z) \bigg|_{x = \pm \frac{gx}{2}} \]
 \[D_n \frac{\delta_n(x, y, z)}{\partial x} \bigg|_{x = \frac{gx}{2}} = - Sg \cdot \delta_n(x, y, z) \bigg|_{x = \frac{gx}{2}} \]
- At the incident light surface (\(z = 0 \)):
 \[D_n \frac{\delta_n(x, y, z)}{\partial z} \bigg|_{z = 0} = S_{av} \cdot \delta_n(x, y, z) \bigg|_{z = 0} \]
- At the back surface (\(z = g_z \)):
 \[D_n \frac{\delta_n(x, y, z)}{\partial z} \bigg|_{z = g_z} = - Sar \cdot \delta_n(x, y, z) \bigg|_{z = g_z} \]

\(Sf \) is the junction recombination velocity, \(Sg \) is the grain boundary recombination velocity, \(Sav \) is the front surface recombination velocity and \(Sar \) is the back surface recombination velocity.

From the excess minority carrier’s density, we can derive the photocurrent density and photovoltage.

II.3 Photocurrent density

In a 3D view, the photocurrent as to be taken as the gradient over the square section of the grain (x,z) plane; this gradient is then normalized to the cross section, giving the photocurrent density as:

\[J_{ph} = \frac{q \cdot D_{ph}}{g_x \cdot g_z} \int_{-\frac{t_2}{2}}^{\frac{t_2}{2}} \int_{-\frac{t_2}{2}}^{\frac{t_2}{2}} \frac{\delta_n}{\partial y} dy \bigg|_{y = -\frac{t_2}{2}} \]

(13)

\(q \) is the elementary charge.

II.4 Photovoltage

The photovoltage is given from the Boltzmann relation as:

\[V_{ph} = V_T \cdot \ln \left(\frac{1 + \frac{Nb}{ni} \cdot \frac{m^*}{e} \int_0 \int \left(\delta_n(x, y, z) \right) dx \cdot dz} {1 - \frac{Nb}{ni} \cdot \frac{m^*}{e} \int_0 \int \left(\delta_n(x, y, z) \right) dx \cdot dz} \right) \]

\(V_T = kT/q \) is the thermal voltage, \(ni \) is the intrinsic carriers density and \(Nb \) the base doping density.

III. SIMULATION RESULTS AND DISCUSSION

We present here the results we obtained from simulation based on the set of equations derived in the previous section.

III.1 Dynamic Impedance module

Figure 3 shows the impedance module versus modulation frequency (logarithmic scale) for various grain sizes \(gx \).

Figure 3: Impedance module versus modulation frequency (logarithmic scale) for various grain sizes \(gx \).
means more grain boundaries and then more recombination. This lead to an increase of the impedance module but this behavior is inverted above the threshold value of the modulation frequency.

We present on figure 4 the impedance module profile versus modulation frequency (logarithmic scale) for various grain sizes \(g_z \).

Figure 4: Impedance module versus modulation frequency (logarithmic scale) for various grain sizes \(g_z \).

This figure shows that impedance module increase with modulation frequency as noted previously; contrary to the previous case, when \(g_z \) increase the impedance module also increase independently of modulation frequency. Effectively, for increasing \(g_z \), the size of the solar cell increases so that for the same operating conditions (mobility in this case) given that the size of the cell increases, the associated impedance will also increase.

Figure 5 illustrates the behavior of the impedance module for various junction recombination velocities:

Figure 5: Impedance module versus modulation frequency (logarithmic scale) for various junction recombination velocities.

Impedance module still increase with modulation frequency and also increases with junction recombination velocity. When junction recombination increases, carrier flow through the junction increase also and then there are less and less free carriers in the base, this means a reduction of the dynamic conductivity and then an increase of the dynamic impedance.

We show on figure 6 the effects of grain boundary recombination velocity on the impedance module:

Figure 6: Impedance module versus modulation frequency (logarithmic scale) for various grain boundary recombination velocities.

This figure shows that impedance module increase with grain boundary recombination velocity; effectively, for increasing grain boundary velocity, excess minority carrier are lost faster and faster so that the free carriers concentration in the base decrease the conductivity of the decrease and the dynamic impedance increase, as observed.

III.2 Dynamic impedance phase

We present here the profile of the dynamic impedance phase (fig.7) versus modulation frequency (logarithmic scale) for various grain sizes \(g_x \).

Figure 7: Impedance phase versus modulation frequency (logarithmic scale) for various grain sizes \(g_x \).

One can see that the phase shift decreases for increasing modulation frequency but the impedance phase is still
negative: the vertical junction solar cell has a capacitive behavior. This behavior is more marked for high gx values given that if gx increases the mean path between generated carriers and the junction increases so that the delay between excitation and current generation increase leading to an increase of the phase. We observe that for lower modulation frequencies (quasi-static state) the impedance phase did not vary in an appreciable manner.

Figure 8 shows the dynamic impedance phase profile versus modulation frequency for various base depth gz:

![Figure 8: Impedance phase versus modulation frequency (logarithmic scale) for various grain sizes gz.](image)

We observe that impedance phase is not very sensitive to gz.

We illustrate on figure 9 the behavior of the impedance phase for various operating points.

![Figure 9: Impedance phase versus modulation frequency (logarithmic scale) for various junction recombination velocities.](image)

This figure shows that impedance phase increases from short circuit to open circuit but the behavior of the vertical junction solar cell is still a capacitive as also illustrated on figure 10.

![Figure 10: Impedance phase versus modulation frequency (logarithmic scale) for various grain boundary recombination velocities.](image)

One can see that impedance phase decrease for increasing grain boundary recombination velocities; that is, the vertical junction solar cell becomes more and more capacitive as Sgb increase. This mean that recombination at grain boundaries delays the response of the vertical junction solar cell as junction recombination velocity.

IV. Conclusion

We have presented a theoretical investigation on the dynamic impedance of a vertical junction solar cell. Simulations show how the impedance module and phase are sensitive to the cell parameters (gx, gz), the modulation frequency ω and the operating point through Sf.

It seems that for all operating points the vertical junction behaves in a capacitive manner and for various grain sizes (gx, gz) and grain boundary recombination velocities, this behavior is maintained.

REFERENCES

